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Treatment for leishmaniasis, which is caused by Leishmania protozoan parasites, currently relies on a reduced arsenal of drugs.
However, the significant increase in the incidence of drug therapeutic failure and the growing resistance to first-line drugs like
antimonials in some areas of Northern India and Nepal limit the control of this parasitic disease. Understanding the molecular
mechanisms of resistance in Leishmania is now a matter of urgency to optimize drugs used and to identify novel drug targets to
block or reverse resistant mechanisms. Some members of the family of ATP-binding cassette (ABC) transporters in Leishmania
have been associated with drug resistance. In this study, we have focused our interest to characterize LABCG2’s involvement in
drug resistance in Leishmania. Leishmania major parasites overexpressing the ABC protein transporter LABCG2 were gener-
ated in order to assess how LABCG2 is involved in drug resistance. Assays of susceptibility to different leishmanicidal agents
were carried out. Analysis of the drug resistance profile revealed that Leishmania parasites overexpressing LABCG2 were resis-
tant to antimony, as they demonstrated a reduced accumulation of SbIII due to an increase in drug efflux. Additionally, LABCG2
was able to transport thiols in the presence of SbIII. Biotinylation assays using parasites expressing LABCG2 fused with an N-ter-
minal green fluorescent protein tag revealed that LABCG2 is partially localized in the plasma membrane; this supports data from
previous studies which suggested that LABCG2 is localized in intracellular vesicles that fuse with the plasma membrane during
exocytosis. In conclusion, Leishmania LABCG2 probably confers antimony resistance by sequestering metal-thiol conjugates
within vesicles and through further exocytosis by means of the parasite’s flagellar pocket.

Leishmaniasis is a neglected tropical disease caused by Leishma-
nia protozoan parasites and is spread by the bite of infected

phlebotomine sand flies. Currently, 1.3 million new cases of leish-
maniasis and 20,000 to 30,000 deaths occur annually through a
variety of clinical presentations (1).

Although chemotherapy is the only current treatment option
for leishmaniasis, its efficacy is increasingly limited by growing
resistance to first-line drugs, especially antimonials; the frequent
side effects associated with their use; and the high cost of treat-
ment. There is a limited number of drugs available for treatment,
including amphotericin B, especially as a liposomal formulation;
paromomycin; miltefosine; or pentavalent antimonials. The
World Health Organization recently recommended the use of a
combination of leishmanicidal drugs in order to decrease the con-
centration and toxicity of the dosages required as well as to delay
the development of resistance. Even so, emerging drug resistance
constitutes one of the main problems facing current leishmaniasis
chemotherapies. In India, 60% of patients suffering from visceral
leishmaniasis do not respond to treatment with antimonials due
to the parasite’s increased resistance to these drugs (2).

One of the most characteristic mechanisms of antimony resis-
tance in Leishmania is drug efflux mediated by ABC (ATP-binding
cassette) transporters such as MRPA (formerly PGPA)/ABCC3 (3,
4) or ABCI4 (5), which results in a reduced degree of antimony
accumulation in parasites. ABC transporters are one of the largest
protein families known; they are highly evolutionarily conserved
from bacteria to humans and are involved in the transport of
different compounds through biological membranes. Leishmania
has 42 ABC genes distributed across nine subfamilies (ABCA to
ABCI), yet to date, only some transporters found in the ABCA,
ABCB, ABCC, ABCG, and ABCI subfamilies have been character-
ized.

Overexpression of MRPA and ABCI4 in Leishmania confers

SbIII resistance to the promastigote forms and SbIII or SbV resis-
tance to the intracellular amastigote forms (5, 6). Leishmaniasis is
treated with antimonials by using pentavalent antimony-based
drugs. SbV can be taken up by amastigotes and reduced to SbIII

inside macrophages so that it may become active against Leishma-
nia parasites. This mechanism has not been fully elucidated, and
there is apparently more than one SbV-to-SbIII conversion route.
Reduced glutathione (GSH) has been observed to promote the
reduction of SbV to SbIII in the phagolysosomes of macrophages
(7). Alternatively, parasite-specific thiol-dependent reductase 1
(TDR1) and arsenate reductase (ACR2) found in Leishmania are
also able to reduce SbV to SbIII (8, 9). As described previously for
MRPA, the resulting SbIII can combine with thiols to form conju-
gates inside intracellular organelles, which are then effluxed from
the parasite (3).

The involvement of the LABCG2 transporter in the phospha-
tidylserine (PS) externalization required for host macrophage in-
fection was reported previously (10). Although PS synthesis in
Leishmania has been a matter of intense debate, it was concluded
that parasites in the late logarithmic phase contain PS (11, 12).

In Leishmania, LABCG4 and LABCG6 transporters have been
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involved in phosphatidylcholine transport and also confer resis-
tance to different drugs, including miltefosine (13, 14). Consider-
ing that some ABC transporters present pleiotropic activity in
response to therapeutic xenobiotics, we focused on the role of the
Leishmania LABCG2 transporter in drug resistance.

MATERIALS AND METHODS
Chemical compounds. Trivalent antimony (SbIII) (potassium antimony
tartrate), trivalent arsenite (AsIII) (sodium meta-arsenite), amphotericin B,
pentamidine, chloroquine, quinine, mefloquine, primaquine, vinblastine,
G-418 (Geneticin), buthionine-(S,R)-sulfoximine (BSO), 4=,6-di-
amidino-2-phenylindole dilactate (DAPI), 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT), n-dodecyl-�-D-malto-
pyranoside (DDM), CdCl2, CoCl2, CuSO4, and GSH were purchased
from Sigma-Aldrich. Miltefosine and perifosine were purchased from
ÆternaZentaris. Pentavalent antimony (SbV) (sodium stibogluconate),
tafenoquine, and sitamaquine dihydrochloride were provided by Glaxo-
SmithKline. Daunomycin was purchased from Pfizer.

Leishmania culture conditions. Promastigotes of Leishmania major
(MHOM/JL/80/Friedlin) and derivative lines used in this study were cul-
tured at 28°C in RPMI 1640-modified medium (Invitrogen) supple-
mented with 20% heat-inactivated fetal bovine serum (hiFBS; Invitro-
gen).

Gene expression. Total RNA from different L. major lines was ex-
tracted by using the High Pure RNA isolation kit (Roche Diagnostics
GmbH). RNA was transcribed into cDNA by employing the qScript
cDNA synthesis kit (Quanta Biosciences, Inc.) according to the manufac-
turer’s instructions. The cDNA obtained was diluted (1:10 and 1:50),
amplified with sense (5=-CCTACAGAGGACACCTACA) and antisense
(5=-GAAGGGATTCTGGCAAG) primers for LABCG2 and with sense
(5=-GAAGTACACGGTGGAGGCTG) and antisense (5=-CGCTGATCAC
GACCTTCTTC) primers for GAPDH (glyceraldehyde-3-phosphate dehy-
drogenase) (as an internal control), and electrophoresed on a 4% agarose gel.

Cell transfection and susceptibility analysis. Promastigotes of L. ma-
jor were transfected with the previously described pUCNEO (empty vec-
tor), pUCNEO-LABCG2, and pXG-GFP::LABCG2 constructs (10) and
selected for G-418 resistance, as described previously (15). The suscepti-
bilities of the respective pUCNEO (control), LABCG2, and GFP-LABCG2
promastigote lines to different compounds were determined by using an
MTT colorimetric assay, as described previously (16). To analyze the re-
lationship between thiol levels and susceptibility to SbIII, parasites were
previously grown in M199 culture medium supplemented with 10%
hiFBS plus 3 mM BSO (a �-glutamylcysteine synthetase inhibitor) for 48
h at 28°C. For assays of susceptibility of intracellular Leishmania amasti-
gotes to SbIII and SbV, stationary-phase promastigotes were used to infect
macrophage-differentiated THP-1 cells at a macrophage/parasite ratio of
1:10, as described previously (17). After overnight infection at 35°C with
5% CO2 in RPMI 1640 medium plus 5% hiFBS, extracellular parasites
were removed by washing with serum-free medium. Infected macro-
phages were incubated at 37°C with different concentrations of SbIII and
SbV with 5% CO2 in RPMI 1640 medium plus 10% hiFBS for 72 and 120
h, respectively. Following incubation, the cultures were fixed and analyzed
as described previously (17).

Cell surface biotinylation. Parasite (1 � 108 promastigotes) surfaces
were labeled as described previously (18) but by using 3% DDM instead of
1% Nonidet P-40 to cause parasite lysis and with a 60-min incubation
instead of a 30-min incubation in lysis buffer coupled with a protease
inhibitor cocktail (Sigma-Aldrich). Protein samples were fractionated by
SDS-PAGE under standard conditions and electrotransferred onto Im-
mobilon-P membranes (Millipore). Immunodetection was performed by
using a 1:5,000 dilution of polyclonal anti-green fluorescent protein
(GFP) (Rockland Immunochemicals) or a 1:3,000 dilution of polyclonal
anti-plasma membrane (PM) protein-LRos3 (18) in phosphate-buffered
saline (PBS) plus 0.01% Tween 20 and 0.1% bovine serum albumin
(BSA). Control over PM integrity was determined by immunodetection

using a monoclonal anti-cytosolic tryparedoxin peroxidase antibody at a
1:6,000 dilution (a gift from Ana M. Tomás, IBMC, Porto, Portugal).
After washing, membranes were incubated with horseradish peroxidase-
conjugated secondary goat anti-rabbit (1:5,000) immunoglobulin G
(Dako) for GFP, LRos3, and tryparedoxin peroxidase. Signals were de-
tected by using the ECL chemiluminescent substrate (Pierce).

Antimony accumulation and efflux. Promastigotes (108/ml) were in-
cubated at 28°C with 100 �M SbIII in RPMI 1640 culture medium at 28°C
for different times. The parasites were centrifuged and pelleted to measure
antimony accumulation after each time period (19). Antimony efflux was
determined by incubating the different promastigote lines with compen-
sated SbIII concentrations (100 �M for the pUCNEO line and 200 �M for
the LABCG2 line) for 1 h at 28°C in culture medium in order to attain
similar labeling in Leishmania lines. The parasites were then washed with
PBS and resuspended in culture medium at 28°C, and the pellet was col-
lected after different time points. The samples for uptake and efflux de-
termination were measured by using inductively coupled plasma mass
spectrometry (ICP-MS; PerkinElmer) as described previously (5).

Determination of nonprotein thiol levels. Log-phase parasites (107

parasites/ml) were grown in M199 medium plus 10% hiFBS in order to
measure thiol levels. They were then washed with PBS and incubated at
37°C with 2 �M CellTracker for 15 min. After incubation, the parasites
were again washed with PBS and analyzed by flow cytometry using a
FACScan flow cytometer (Becton-Dickinson). Fluorescence emission was
quantified at between 515 and 545 nm by using Cell Quest software. The
efflux of nonprotein thiols to the culture medium was determined by
using the ThioStar thiol fluorescent detection reagent (Luminos) as de-
scribed previously (5).

RESULTS AND DISCUSSION
Overexpression of LABCG2 confers resistance to antimony and
other compounds. The role of ABC transporters in resistance to
different compounds has been studied previously (5, 19–21). As
mentioned above, the Leishmania LABCG2 transporter is involved
in the PS externalization required for macrophage infection (10). We
have determined that the overexpression of LABCG2 in Leishmania

TABLE 1 Drug resistance profile in promastigote L. major linesa

Drug

Mean EC50 (�M) � SD (RI)b

pUCNEO LABCG2 LABCG2rev 90D

SbIII 16.02 � 2.63 118.84 � 11.50 (7.4)* 11.53 � 0.69 (0.7)
AsIII 0.99 � 0.30 6.02 � 1.50 (6.0)* 1.32 � 0.02 (1.3)
Amphotericin B 2.27 � 0.73 2.33 � 0.45 (1.0) —
Miltefosine 18.25 � 0.22 17.64 � 1.70 (0.9) —
Pentamidine 0.66 � 0.11 1.03 � 0.11 (1.6)* 0.83 � 0.03 (1.3)
Tafenoquine 12.87 � 3.16 15.92 � 7.50 (1.2) —
Sitamaquine 21.88 � 5.43 18.02 � 0.82 (0.8) —
Primaquine 5.43 � 0.32 6.11 � 0.05 (1.1) —
Chloroquine 10.99 � 0.53 9.37 � 1.67 (0.8) —
Daunomycin 0.56 � 0.09 1.06 � 0.16 (1.9)* 0.67 � 0.06 (1.2)
Mefloquine 2.02 � 0.19 3.04 � 0.34 (1.5) —
Quinine 23.62 � 2.84 29.69 � 0.26 (1.3) —
Perifosine 20.99 � 1.95 20.96 � 1.27 (1.0) —
Vinblastine 10.31 � 2.16 13.25 � 2.65 (1.3) —
a Promastigotes of Leishmania lines were grown for 72 h at 28°C in the presence of
increasing concentrations of drugs. Cell viability was determined by using an MTT-
based assay as described in Materials and Methods. Bold font represents significant
resistance.
b Resistance indexes (RI) were calculated by dividing the EC50 for the Leishmania line
overexpressing LABCG2 and LABCG2rev 90D by that for the Leishmania control line
(pUCNEO). Data are the means � standard deviations of results from three
independent experiments. Significant differences were determined by using the Student
t test (*, P � 0.01). —, not determined.
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parasites did not show differences in PS exposition (10) or cell
growth.

LABCG2 belongs to the same subfamily as mammalian
ABCG2, a well-characterized PS transporter (22) that also pumps
drugs conferring a multidrug-resistant (MDR) phenotype in can-
cer cells (23, 24). Other Leishmania ABCG proteins, such as
LABCG4 and LABCG6, have been described to be involved in
phospholipid transport (phosphatidylcholine analogues) and
drug resistance (alkyl-phospholipids) (13, 14). However, the role
of the LABCG2 transporter in drug resistance has not yet been
elucidated. Modulation of gene expression through gene amplifi-
cation and gene deletion by homologous recombination is a com-
mon mechanism of drug resistance in Leishmania strains derived
from both the laboratory and the field thanks to the plasticity of
the Leishmania genome (25–27). We are therefore interested in
determining whether the overexpression of LABCG2 in a L. major
line (data not shown) could confer drug resistance. We analyzed
the profile of resistance to different leishmanicidal drugs, including
SbIII, amphotericin B, miltefosine, pentamidine, and sitamaquine,
and other compounds such as AsIII, tafenoquine, primaquine, chlo-
roquine, daunomycin, mefloquine, quinine, perifosine, and vinblas-
tine (Table 1). As described previously, many of them are probably
transported by other Leishmania ABCs (5, 13, 14, 28, 29). The
results showed that promastigotes overexpressing LABCG2 were
�6- and 7-fold more resistant to AsIII and SbIII, respectively, than
the control line (pUCNEO) (Table 1), suggesting that these metal
ions could be substrates for the LABCG2 transporter, as previ-
ously described for MRPA and ABCI4 (3, 5). We also observed
that overexpression of LABCG2 did not affect susceptibility to
other metal ions such as CdII, CoII, and CuII (Table 2). Contrary to
other members of the Leishmania ABCG subfamily such as
LABCG4 and LABCG6, LABCG2 does not confer resistance to the
alkyl-phospholipids miltefosine and perifosine or the amino-
quinolines sitamaquine and chloroquine (13, 14). Furthermore,
the LABCG2 line “cured” for plasmid pUCNEO-LABCG2
(LABCG2rev) by maintaining the parasites in culture without
drug selection for 3 months (LABCG2rev 90D) showed a suscep-
tibility phenotype similar to that of the control line (Table 1).

To analyze whether the expression levels of LABCG2 were cor-
related with susceptibility to SbIII, the LABCG2 lines were cultured
in the absence of G-418 for 15, 30, 60, and 90 days to reduce
plasmid copy numbers and LABCG2 expression levels (Fig. 1a).
The results showed a direct relationship between LABCG2 expres-
sion levels and SbIII resistance (Fig. 1b). Consequently, a greater
degree of LABCG2 expression generates a higher level of resistance
to SbIII.

Further validation analysis showed that a second transfection
event that facilitates LABCG2 overexpression in Leishmania (2-
LABCG2) also conferred significant resistance to SbIII and AsIII

(Table 2). The above-described experiments help to discard the

TABLE 2 Heavy metal resistance profiles of L. major promastigote linesa

Metal

Mean EC50 (�M) � SD (RI)b

pUCNEO LABCG2 2-LABCG2 GFP-LABCG2

SbIII 16.02 � 2.63 118.84 � 11.50 (7.4)* 42.92 � 7.75 (2.7)* 34.93 � 1.00 (2.2)*
AsIII 0.99 � 0.30 6.02 � 1.50 (6.0)* 2.72 � 0.78 (2.7)* 3.20 � 0.18 (3.2)*
CdII 58.77 � 0.82 52.79 � 4.21 (0.9) — —
CoII 28.46 � 4.05 36.57 � 5.27 (1.3) — —
CuII 43.52 � 7.02 60.68 � 4.99 (1.4) — —
a Promastigotes of Leishmania lines were grown for 72 h at 28°C in the presence of increasing concentrations of metals. Cell viability was determined by using an MTT-based assay
as described in Materials and Methods. Bold font represents significant resistance.
b Resistance indexes (RI) were calculated by dividing the EC50 for Leishmania line overexpressing LABCG2, LABCG2rev at 90 days (LABCG2rev 90D), second-event LABCG2
(2-LABCG2), and GFP-LABCG2 by that for Leishmania control line (pUCNEO). Data are the means � standard deviations of results from three independent experiments. Significant
differences were determined by using the Student t test (*, P � 0.01). —, not determined.

FIG 1 RNA expression analysis of LABCG2 in L. major lines. (a, top) LABCG2
gene expression determined by reverse transcription-PCR, as indicated by the
amplified 82-bp ABCG2 fragment. (Bottom) GAPDH gene expression as the in-
ternal loading control showing the amplified 227-bp GAPDH fragment. Total
RNA was extracted from the pUCNEO line (control), LABCG2 lines, and
LABCG2 parasites grown for 15, 30, 60, and 90 days in the absence of G-418
pressure (LABCG2rev 15D, LABCG2rev 30D, LABCG2rev 60D, and LABCG2rev
90D lines, respectively) and then reverse transcribed to single-stranded cDNA by
specific priming as described in Materials and Methods. PCR products were elec-
trophoresed on a 4% agarose gel, stained with ethidium bromide, and viewed
under a UV illuminator, and the relative intensity was measured against that of
GAPDH by using a densitometer. The positions of molecular markers (base pairs)
are indicated on the left. (b) Relationship between LABCG2 expression (arbitrary
units [a.u.]) and SbIII susceptibility (EC50 values � standard deviations from three
independent experiments) in L. major promastigote lines. Data from reverse
transcription-PCR assays, representative of at least three independent experi-
ments, are shown.
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possibility that the resistant phenotype observed was due to an
intrinsic characteristic of the clone rather than a phenotypic char-
acteristic of the overexpression of this transporter (Table 2). The
differences observed in susceptibility to SbIII and AsIII between the
two transfection events involving LABCG2 were due to variations
in the parasites’ degree of LABCG2 expression (data not shown).
Furthermore, parasites overexpressing LABCG2 fused to GFP
presented a susceptibility pattern similar to that of 2-LABCG2
parasites (Table 2), demonstrating that an N-terminal fusion of
the GFP tag does not interfere with the functionality of the
LABCG2 transporter.

The resistance to SbIII observed in the promastigote forms of L.
major was retained in the intracellular amastigotes obtained after
THP-1 cell infection (Table 3). Intracellular amastigotes overex-
pressing LABCG2 also presented significant resistance to sodium
stibogluconate, a leishmanicidal drug containing SbV, which is
reduced to SbIII inside macrophages (Table 3). LABCG2 has not
been described as an antimony resistance marker in previous stud-
ies based on omics techniques, similarly as described previously
for Leishmania ABCI4 (5), considering that not every change in
the expression levels of proteins involved in antimony resistance is
detected by these techniques. Our findings lend weight to the idea
that the overexpression of LABCG2 confers antimony resistance
to Leishmania parasites.

Reduction in accumulation of SbIII due to increased efflux in
L. major lines overexpressing LABCG2. In order to uphold the
suggestion that SbIII is a potential substrate for LABCG2, the in-
tracellular accumulation of antimony metal ions in L. major lines
was measured after different durations (10, 20, 30, and 60 min) by
ICP-MS (Fig. 2a).

Sixty minutes after incubation with SbIII (Fig. 2a), parasites
overexpressing LABCG2 accumulated 76% of the total amount of
SbIII accumulated by the control parasites. To assess whether the
lower level of accumulation of this metal ion compound was due
to increased efflux to the extracellular medium, Leishmania lines
were loaded under conditions that generated similar amounts of
intracellular SbIII. The amount of metal ion retained inside the
parasites was then measured after different periods (Fig. 2b), and
so we determined that SbIII efflux is faster in parasites overexpress-
ing LABCG2 (Fig. 2b), leading to the conclusion that this trans-
porter mediates SbIII elimination. As reported previously, the pri-

mary mechanism of resistance consists of decreasing the amount
of active drug within the cell by a variety of routes (30). Parasites
can decrease the uptake of, increase the efflux of, or inactivate the
drug by sequestration, among other possible mechanisms. The
LmAQP1 aquaglyceroporin is the only protein known to trans-
port antimony inside L. major (31, 32), and its downregulation
subsequently leads to increased drug resistance (33). Concerning
efflux, members of the eukaryotic ABCC subfamily are involved in
SbIII and AsIII resistance by exporting these metal ions outside the
cells or by sequestering them within intracellular vesicles (34).
MRPA from Leishmania is one of the best-known ABC transport-
ers implicated in antimony resistance through the sequestration of
SbIII-thiol complexes within an intracellular organelle near the
flagellar pocket and then expulsion from the parasite by exocytosis
(3). The levels of antimony efflux obtained for LABCG2 are
slightly higher than the ones observed for MRPA (35) but lower
than those for other MDR pumps (36, 37), suggesting similar
mechanisms of action for MRPA and LABCG2. To the best of our

TABLE 3 Susceptibility to antimony in intracellular amastigotes of
L. major linesa

Metal

Mean EC50 (�M) � SD (RI)b

pUCNEO LABCG2 LABCG2rev 90D

SbIII 6.16 � 0.07 21.30 � 0.81 (3.4)* 5.90 � 0.11 (0.9)
SbV 76.14 � 2.88 	200 (	2.6)* 87.73 � 9.71 (1.1)
a Macrophage-differentiated THP-1 cells infected with L. major lines using a
macrophage/parasite ratio of 1:10 were incubated for 3 days in the presence of SbIII or
for 5 days in the presence of SbV at different concentrations, as described in Materials
and Methods. Antimony susceptibility was determined from the percentage of infected
cells and the number of intracellular amastigotes per cell in antimony-treated cultures
versus nontreated cultures. Infection was determined by DAPI staining of 300
macrophages/well.
b Resistance indexes (RI) were calculated by dividing the EC50 for the Leishmania line
overexpressing LABCG2 and LABCG2rev 90D by that for the Leishmania control line
(pUCNEO). Data are the means � standard deviations of results from two independent
experiments. Significant differences were determined by using the Student t test (*, P �
0.01).

FIG 2 Time-dependent accumulation and efflux of SbIII in Leishmania lines.
(a) L. major lines (1 � 108 promastigotes/ml) carrying pUCNEO (control) and
overexpressing LABCG2 were incubated with 100 �M SbIII, and samples were
taken after different time points. Antimony accumulation was measured by
ICP-MS. (b) An efflux assay was performed after incubation of Leishmania
lines with compensated concentrations of SbIII for 1 h to ensure similar label-
ing in the different lines. The parasites were then washed and resuspended in
PBS without SbIII and pelleted at different time points. The data are the
means � standard deviations of results from three independent experiments
performed in duplicate. Significant differences versus the control line were
determined by using the Student t test (*, P � 0.01).
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knowledge, there have been no reports to suggest that the ABCG
transporter is involved in SbIII or AsIII tolerance. Regarding other
heavy metals, some plant full-size ABCG (PDR) transporters con-
fer cadmium and lead tolerance (38–40). Therefore, this work
presents the first description of the role of an ABCG transporter in
the resistance of Leishmania to SbIII and AsIII.

Role of thiols in Leishmania ABCG2-mediated antimony re-
sistance. As described above, thiols conjugate with heavy met-
als and export them to the extracellular medium, which repre-
sents an antimony resistance mechanism in Leishmania (41).
We therefore analyzed nonprotein thiol efflux in parasites over-
expressing LABCG2 using ThioStar (Fig. 3). In the presence of
SbIII (Fig. 3), the LABCG2 line showed significantly higher thiol
efflux than did control parasites. This implies that the LABCG2
transporter confers resistance to SbIII by the efflux of SbIII-thiol
complexes; however, we cannot discard the possibility of a
cotransport activity of antimony and thiols. In the absence of SbIII

(Fig. 3), we also observed a significant increase in thiol efflux for
parasites overexpressing the LABCG2 transporter in comparison
with the control line, although the increase was not as pronounced
as that in the presence of SbIII. These results suggest that the
LABCG2 transporter could export thiols without being conju-
gated to antimony.

Since conjugation of thiol adducts of SbIII seems to be required
for resistance to antimony, we determined the drug resistance
profiles of L. major lines overexpressing LABCG2 after treatment
with BSO, a �-glutamylcysteine synthetase inhibitor. For these
experiments, parasites were previously maintained in M199 cul-
ture medium supplemented with 10% hiFBS for 48 h at 28°C, a
medium with lower levels of serum and thiols than those of RPMI
1640 medium with 20% hiFBS. We observed a significant decrease
in SbIII 50% effective concentrations (EC50s) for parasites overex-

pressing LABCG2 after incubation with BSO than for those incu-
bated without BSO (Table 4). The different EC50s of SbIII observed
for the pUCNEO and LABCG2 lines without BSO (Table 4) with
respect to values shown in Table 1 were due to differences in the
contents of serum and thiols in the media used in both experi-
ments. Hence, the SbIII resistance of L. major lines overexpressing
LABCG2 is linked to thiol levels inside the parasites, probably due
to the ability of LABCG2 to export thiol-conjugated adducts, as
described previously for ABCI4 (5) and MRPA (3) in Leishmania.
The implication of ABC transporters in detoxification by the ef-
flux of metal-thiol complexes was described previously for other
organisms, such as the vacuolar transporter YCF1 in Saccharomy-
ces cerevisiae, which detoxifies bis-glutathione-cadmium com-
plexes (42), or HTM1, an ABC transporter localized in fission
yeast vacuolar vesicles that confers tolerance to cadmium by tak-
ing up glutathione-derived phytochelatin conjugated to CdII (43).

Considering that the LABCG2 transporter revealed an appar-
ent capacity to export thiols in the absence of SbIII, we measured
internal thiol levels in L. major lines by flow cytometry analysis

FIG 4 Determination of thiol levels in Leishmania lines. Promastigotes (107/
ml) of L. major lines carrying pUCNEO (control) and overexpressing LABCG2
were incubated for 15 min at 37°C with 2 �M CellTracker and quantified by
flow cytometry. The data are the means � standard deviations of results from
three independent experiments. Significant differences versus the control line
were determined by using the Student t test (*, P � 0.01).

FIG 3 Nonprotein thiol efflux in Leishmania lines. L. major lines (1 � 108

promastigotes/ml) carrying pUCNEO (control) (diamonds) and overexpress-
ing LABCG2 (squares) were incubated for 1 h either with (closed symbols) or
without (open symbols) 100 �M SbIII for 1 h. The promastigotes were then
washed with PBS, and the supernatants were processed after different periods.
Sample fluorescence (excitation, 380 nm; emission, 510 nm) was determined
by using an Infinite F200 luminescence system (Tecan Austria GmbH) and
expressed in relative fluorescence units (RFU). The data are the means �
standard deviations of results from three independent experiments.

TABLE 4 Susceptibility of L. major lines to antimony in the presence of
BSOa

Compound

Mean EC50 (�M) � SD (RI [EC50 decrease])

pUCNEO LABCG2

SbIII 6.50 � 1.01 37.45 � 1.50 (5.8)†
SbIII 
 BSO 4.96 � 1.23 (1.3) 8.23 � 0.91 (1.7 [4.5])*
a Parasites were grown in M199 culture medium supplemented with 10% hiFBS for 72
h at 28°C in the presence of increasing concentrations of SbIII. Cell viability was
determined by using an MTT-based assay as described in Materials and Methods.
Resistance indexes (RI), indicated in parentheses, were calculated by dividing the EC50

for the Leishmania line overexpressing LABCG2 by that for the Leishmania control line
(pUCNEO) with the same treatment. The EC50 decrease, indicated in square brackets,
was calculated by dividing the EC50 after SbIII treatment by that for treatment with SbIII

plus BSO (a �-glutamylcysteine synthetase inhibitor) in each Leishmania line. A total of
3 mM BSO was added to the culture medium 48 h before the susceptibility experiment
was performed. The data are the means � standard deviations of results from three
independent experiments. Significant differences were determined by the Student t test
(†, P � 0.01 for pUCNEO versus the LABCG2 line; *, P � 0.01 for the LABCG2 line
treated with versus without BSO).
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using CellTracker. LABCG2 parasites presented lower thiols level
than those of the control parasites (Fig. 4). Consequently, these
results support the hypothesis that LABCG2 exports thiols to the
extracellular medium without the need for conjugation to anti-
mony. Decreased levels of GSH have been observed in MDCKII
cells overexpressing human ABCG2/BCRP (44). Additionally,
BCRP overexpression in HN4 cells was observed to increase ex-
tracellular GSH levels (45). However, measurement of GSH trans-
port in membrane vesicles indicated that BCRP does not catalyze
any significant GSH transport (46). In contrast, ABCC1/MRP1
mediated active GSH transport in cancer cells (47). Future studies
using membrane reconstitution of purified LABCG2 in proteoli-
posomes will further our understanding of LABCG2-mediated
thiol transport in the absence of SbIII.

Determination of plasma membrane localization of LABCG2 in
Leishmania parasites using a biotinylation assay. We have pre-
viously used fluorescence microscopy assays to determine that
LABCG2 partially colocalizes with the endosomal marker FM4-64
in L. major, suggesting that LABCG2 is located in the intracellular
vesicles of the endocytic pathway of Leishmania parasites (10).
However, we have not determined whether LABCG2 could be
localized in the parasites’ plasma membrane, where the trans-
porter could be involved in the mechanism of drug efflux. We
have previously described how Leishmania ABCI4 overexpression
is localized in mitochondria, where it decreases the toxicity and
accumulation of antimony, probably through efflux of the metal
ion to the cytosol (5). Furthermore, ABCI4 that is localized in the
parasitic plasma membrane may help to protect cells against the
toxic effects of antimony and other compounds by effluxing them
as conjugated thiol complexes (5).

To corroborate the possible localization of LABCG2 in the par-
asitic plasma membrane, we performed biotinylation assays using
parasites expressing LABCG2 fused with an N-terminal GFP tag.
Expression of the GFP-LABCG2 protein was determined by West-
ern blotting of whole-parasite lysates. As expected, a band corre-
sponding to GFP-LABCG2 was detected at �100 kDa (Fig. 5). We
also observed part of the protein localized in the PM extract, sup-
porting the hypothesis that the transporter would be localized in
intracellular vesicles, which would in turn fuse with the PM to
release their content to the extracellular medium. The MRPA
transporter has a similar subcellular localization, since it is found

in intracellular membranes believed to correspond to vesicles that
could be exocytosed via the flagellar pocket (3). Besides, we did
not observe cytosolic tryparedoxin peroxidase among the biotin-
ylated surface protein fractions, confirming that the labeling re-
agent did not penetrate the PM and consequently validating the
specificity of the biotinylation procedure.

In conclusion, overexpression of LABCG2 in the plasma mem-
brane of Leishmania may help to protect cells against the toxic
effects of antimony and other compounds by effluxing them as
conjugated thiol complexes. Future work should endeavor to ob-
tain null mutants for LABCG2 that could potentially be used to
understand the role of LABCG2 in Leishmania as a thiol-X pump
and to validate it as a marker of clinical antimony resistance.
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